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Nonlinear Dielectric Constant of a Paraelectric Material* 
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An expression is obtained for the nonlinear dielectric constant of a paraelectric material. This is given 
in terms of the coupling parameters of the Born-von Karman lattice dynamical theory. Deviations from 
the Devonshire phenomenological theory are discussed. 

1. INTRODUCTION 

THE connection between lattice dynamics and the 
dielectric properties of the hard ferroelectrics 

(e.g., BaTiOs and its isomorphs) has been made both 
theoretically1 and experimentally.2 It is now generally 
agreed that the interesting temperature-dependent prop­
erties of ferroelectric materials arise from a long-wave­
length transverse optical mode which becomes unstable 
at the ferroelectric phase transition. Above the transi­
tion temperature the frequency of this long-wavelength 
mode is not determined solely by harmonic interactions 
between the constituent ions. In fact, it appears that 
harmonic interactions are not sufficient to stabilize this 
mode and provide a real frequency. The stabilization 
of this mode can be brought about by a consideration 
of anharmonic interactions. Since anharmonic interac­
tions perform such a fundamental role with regard to 
the stability of the system, they cannot be treated in 
the usual fashion. That is to say, one cannot simply ex­
pand the partition function in powers of the anharmonic 
coupling coefficients and retain only the first few terms 
in such an expansion. It has been shown, however, that 
statistical theory can be done for a paraelectric material 
by a simple modification of the usual procedure.3 In 
Ref. 3, it was shown how one could obtain the linear 
dielectric constant of a paraelectric material in the 
language of Born-von Karman lattice dynamics. In the 
present paper this calculation is extended to a considera­
tion of the nonlinear response. 

In Sec. 2 the Hamiltonian is discussed. This Hamil-
tonian is a modified version of the one treated by Szigeti4 

in connection with the temperature dependence of the 
dielectric constant of the alkali halides. The major dif­
ference, however, is that all long-wavelength transverse 
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optical modes which are unstable in the harmonic ap­
proximation are collectively labelled with zero wave 
vector and assigned an imaginary frequency. Terms 
quartic in this mode coordinate are also included in the 
Hamiltonian. An expression for the nonlinear dielectric 
constant above the transition is then obtained in Sec. 3. 
It is shown in Sec. 4 that the temperature dependence 
of the nonlinear response is almost the same as results 
from the Devonshire theory.5 Devonshire expanded the 
free energy in powers of the polarization: 

F(p,r)=F(o,r)+^(r-rc)P
2+jBP4+cP6, (i) 

with A, B, and C as temperature-independent constants. 
Measurements of the nonlinear dielectric response of 
BaTiOs have shown the coefficient B to be temperature 
dependent.6,7 The contributions to the linear tempera­
ture dependence of B are discussed in Sec. 4. In particu­
lar, it is shown that electron cloud deformation con­
tributes to the linear temperature variation of this 
coefficient. There have been previous calculations of the 
nonlinear response of a paraelectric material; however, 
these have been based essentially upon an independent 
ion model of the lattice8 and do not exhibit the full com­
plexity of the temperature variation of B. 

2. HAMILTONIAN 

Consider the following Hamiltonian9: 

5C = 3C1-e*P:iV1/V+5C2, (2) 
where 

3Ci= -*(«oV)2+4 £(«*V02+£ E(«*atf*°)2 

k k 

+N-1i*qo°'ZA*q-k0qka 

k 

+N-*F(q<rY+N-1(q0')» E Ftiqk0)* 
h 

+r 1 (0 ! Ef t (? t ' )
! , (3) 

k 
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and 

W2=EZXkq-.k°qk
a 

k 

+EN-1'*qo°Z Y^oy+EN-^qo'Z^iciq^y. 
k k 

(4) 
The terms in the first line of Eq. (3) represent the har­
monic part of the potential energy due to lattice dis­
placements. (qk° and qk

a are the normal coordinates of 
wave number k for the optical and acoustic mode, 
respectively.) go0 is the normal coordinate of that 
optical mode designated by zero wave number and has 
a purely imaginary frequency associated with it in the 
harmonic approximation (we denote this frequency by 
icoo0). k = 0 designates a mode with wavelength long com­
pared with the lattice parameter but small compared with 
the sample size. There are a large number of such modes; 
however, they are a small fraction of the total number of 
modes and are, therefore, treated as a single mode.10 n 

The second, and third and fourth lines of Eq. (3) repre­
sent the third- and fourth-order anharmonic contribu­
tions to the potential energy, respectively. The constant 
F is assumed to be positive since this will lead to a 
positive B coefficient [see Eq. (1)]. Since the calcualtion 
is performed for a clamped crystal, this choice is in 
agreement with the results of Stern and Lurio7 for 
BaTiOs. N is the number of ion pairs. The calculation 
is performed for two atoms per unit cell and the optical 
mode of this model is chosen as the soft temperature-
dependent ferroelectric mode. The second term on the 
right of Eq. (2) represents the first-order effect of the 
electronic distortions plus the effect of the displacement 
of the ions as a whole. E is the macroscopic electric field. 
The first and second lines of Eq. (4) are the second- and 
third-order effects of electronic deformations, respect­
ively. The remaining undefined quantities are constants. 
The summations over k exclude the value k — 0. All 
multiplicative constants that do not affect the final 
result are also neglected. As discussed by Szigeti,4 the 
Hamiltonian has been simplified by the assumption of a 
cubic structure and a center of symmetry for the 
material under consideration. These assumptions con­
cerning the structure are consistent with the perovskite 
structure in the unpolarized phase. 

3. DIELECTRIC CONSTANT 

Contributions to the dielectric constant quadratic in 
the electric field are obtained in this section. The largest 
contribution to this nonlinear response [the constant B 
of Eq. (1)2 arises from the fourth-order term in the 
polarization mode coordinate. Anharmonic interactions 
and electron deformations will be shown to contribute 
to the linear temperature variation of B. 

1 0 T . H . K. Barron, Phys. Rev. 123, 1995 (1961). 
11 A more detailed analysis could, however, be performed if 

desired. That is, one could introduce a number of unstable modes 
into the Hamiltonian and if need be, consider the interactions 
between these. 

The partition function of the system is given by 

/

oo oo oo 

dq*°[ Hdqk°\ n ^ a e x p { - ) 8 3 C ) , (5) 
-oo J —oo k J—oo k 

where ^ = 1 / ^ ^ . The integrals over dqk° and dqk
a may 

be readily performed. In doing this, use is made of 
the following symmetry properties for the coupling 
parameters: 

Ak=—A-k, Xk— — X-k, 

Fk=F-]c, Gk=G-k, 

Yk—Y-ky Zk—Z-k. 

Equation (5) then becomes 

z=[ vncr*(«.e)]- , /2 

(6) 
where 

Tk(qo°)^ak+(3kE+ykE\ 
with 

a*=(l+iV-Hgo0)V)(l+iV-1(go0)2x*)-^-1(go0)Vibl 

Pk=N-l%°tPk(l+N-l(qo°)2\k) 

+ak(l+N-1(qo0)2»k)-2rkvk^'}, 
yk = N-1(qQ°)2pk<rk-Tk

2, 

and 

vk=2Fk/{uko)\ pk=2Yk/(a>k°)\ 

\k=2Gk/(ojk
a)\ ak=2Zk/(a>ka)2, (7) 

vk
ll2=Ak/o)k°ci)k

a, Tk=Xk/a)k°a>k
a. 

If the function Tk(qo°) was independent of go0, the 
system would be in unstable equilibrium at go0=0 and 
would make a transition to the polarized or ferroelectric 
state. The fourth-order terms that couple the uniform 
mode with the other modes stabilize the system above 
the transition temperature. This can be made evident 
if one rewrites Eq. (6) as 

Z=f dqo°Ill(Tk(qo0)r112 

. / - c o k 

X exp {^N-1 (go0)2 (kk+fik - * * ) } ] 

Xexp{-^^o0qo0)2-e^ENll2qo°+N-lF(qQ^} , (8) 

with use of JJk exp{— A*} -exp{X)fc A^} = 1. The fre­
quency "renomalization" or stabilization is independent 
of the electric field, so E can be considered set equal to 
zero for the present argument. The product expression 
of Eq. (8) is expanded in powers of (go0)2. I t can be 
shown that the terms proportional to (go0)2 cancel, 
whereas the higher order terms vanish in the limit of 
infinite periodicity volume. Thus, this way of rewriting 
Eq. (6) regroups in the exponent, all nonvanishing 



D I E L E C T R I C C O N S T A N T O F P A R A E L E C T R I C M A T E R I A L S A209 

terms which would arise from an expansion of the parti­
tion function in powers of the anharmonic coupling 
parameters. The temperature dependent frequency a>0° 
is given by 

uQ°= [ - (co0°)2+ (Nfi)-1 E (X*+M*— ^ ) ] 1 / 2 

k 

~(T-Tcy\ (9) 

Tc is the Curie temperature. 
Since we wish to obtain an expression for the polariza­

tion as a power series in the electric field, the exponent 
and the product of the functions Tk [Eq. (8)] must be 
expanded in powers of the field. The expansion of the 
former is straightforward. The latter is obtained by first 
expanding the individual Tk~1/2 functions and then pick­
ing out all relevant terms arising from the product of 
these functions. The partition function is then written 
as a power series in the electric field: 

Z = l + a £ 2 + & £ 4 + - - - . (10) 

Odd powers of the field do not appear since the Hamil-
tonian [Eq. (2)] describes a centrosymmetric crystal. 
The coefficients a and b are obtained by performing 
integrations over the polarization mode coordinate qo°, 
the results of which will be discussed presently. 

The dielectric constant is given by12 

e - 1 = (dP/dE) = l /0(d2 InZ/dE2) 

= 2/3-~1a+l2^(b~~±a2)E2+ • • * 
= r 0 + r ! E 2 + . . . . ( i i ) 

The linear dielectric constant corresponds to the classi­
cal limit of a previous result,3 

T*=AT+[C/(T-TC)~](\+BT+DT*). (12) 

The origin of the constants A, B, C, and D and their 
experimental significance has been discussed in detail 
in Ref. 3. The coefficient r x of the quadratic dielectric 
response can be written 

rx=[(E0+Eir)/(r-rc)
4] 

X (Fo+F1T+F2r+F\T*+FiT*) 

+ [T/(T-Tcy](Do+D1T+D2T*+DiP) 

+ lT/(T-TcY'](Co+ClT+C2r) 

+ lT/(T-TcmB0+B1T)+A1T. (13) 

At temperatures high compared with Tc, this is just 
the first few terms of a Laurent series in temperature, 
with EQFOT~A the leading term. We emphasize that 
Eq. (13) gives the exact temperature dependence of 
the quadratic nonlinear response for the Hamiltonian 
of Eq. (2). Higher order anharmonic and moment 
terms, which have been neglected, will generate the 
rest of the series. The terms that vary as T~* and T~~z 

in Eq. (13) are, however, of lowest order in the anhar­
monic and moment coupling parameter, and are there­

in units of 1/4TT for cgs and e0 for mks. 

fore the most important if the series converges rapidly 
in powers of these coupling parameters. 

To terms quadratic in the electric field, the largest 
contributions to the nonlinear dielectric constant from 
Eq. (13), are included in the following expression: 

e-l = To+l(M+HT)/(T-Tcy]E2, (14) 
with13 

H—EoFi-\-E\Fo, 
and 

Eo^-iF, 

Ei=f kB {(1/A0E ( X * 2 + M * 2 + vk
2- 2\kvk- 2nkvk)} , 

k 

F0=S(e*Tcy/(w0°y, (16) 

F 1 = - [ 1 6 ( ^ ) ^ 7 7 / ( c o o 0 ) 8 ] 

X{(l/N)Z(pk+<rk~2Tkuk^-)}. 
k 

4. COMPARISON WITH DEVONSHIRE THEORY 

In the previous section, an expression was developed 
for the dielectric constant (or polarization) as a series 
in powers of the electric field. Let us now perform an 
inversion to express the electric field in powers of the 
polarization.14,15 The results can then be directly com­
pared with the results of Devonshire's5 phenomenologi-
cal theory. 

Combining the results of Eqs. (11), (12), and (14), 
the polarization may be written 

p = £ { € i + [ c / ( r - r c ) ] } 
+ i E 3 { ( M + ^ r ) / ( r - r c ) 4 } + . . . . (17) 

The first term on the right of this equation has been 
simplified by neglecting the small term linear in the 
temperature arising from the presence of a second-order 
moment and assuming T^>TC so that [T/(T— T c ) ] = 1. 
€i can be assumed to consist of four contributions: a 
contribution from the other hard modes, from certain 
sixth-order potential energy terms (both of which until 
now have been neglected), from the electronic polari-
zability, and a contribution BC arising from the effect 
of electronic deformations. The result of inverting 
Eq. (17) is 

E=p{e1+[(c/(r-rc)]}-
i-4PMe1+[(c/(r-rc)]}-

4 

X{(M+HT)/(T-Tcy} + --., (18) 

13 Expressions relating all of the coefficients appearing in Eq. 
(13) to the coupling parameters are given in Raytheon Technical 
Memorandum T-458. 

14 H. Jeffreys and B. S. Jeffreys, Mathematical Physics, (Cam­
bridge University Press, Cambridge, England, 1956), 3rd ed., p. 
379. 

15 This inversion is equivalent to transforming from the Helm-
holtz to the Gibbs form of the free energy function. 
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which can be cast into the following form (again assum­
ing T»TC): 

E=P{C~l(-Tc+T+(rT2)} 

-$I»iC-*(M+n'T)} + --., (19) 
with 

(7= - ( 1 / C ) 61 (20) 

H' = H-4M(ei/C). 

Equation (19) is to be compared with Eq. (1), which 
results from Devonshire's assumed form of the free 
energy function. The largest temperature variation in 
this expression is associated with the Curie-Weiss 
behavior of the dielectric constant. This results since 
close cancellation of harmonic forces in the lattice 
enhances the temperature-dependent susceptibility 
arising from third- and fourth-order anharmonic con­
tributions. The linear response will deviate from the 
Curie-Weiss behavior due to the presence of electronic 
polarizability, other optical modes, electronic deforma­
tions, and potential terms of higher order than the third 
and fourth. Lowest order contributions to such devia­
tions are described by a. 

The largest contribution to the nonlinear response 
arises from the constant term M. From Eqs. (15) and 
(16), it is seen that the fourth-order potential term 
arising solely from the long-wavelength optical motion 
is responsible for this contribution. This contribution 
is included in Devonshire's free energy function. The 
coefficient of the Pz term is also temperature dependent. 
The linear temperature variation of this term is de­
scribed by the constant Hr. From Eqs. (15), (16), and 
(20), it is seen that the presence of electronic polariza-
bility, other optical modes, electronic deformations of 
second- and third-order, and third- and fourth-order 
anharmonic contributions contribute to the linear tem­
perature variation of this coefficient. A complete treat­
ment of all lowest order potential and moment contribu­
tions to Hr would yield a much more complicated expres­
sion than found here. Indeed, fifth- and sixth-order 

potential energy terms and fourth- and fifth-order 
moments will also contribute to H'. Contributions from 
these terms to Hf can be obtained by a straightforward 
extension of the preceding calculation. In a previous 
calculation3 it was emphasized that deviations from the 
Curie-Weiss behavior of the linear dielectric constant 
cannot, in general, be simply interpreted in terms of the 
presence of electronic polarizability and other hard 
optical modes. Potential and moment terms also con­
tribute. In this paper we wish to make the point that 
the linear temperature variation of the B coefficient in­
volves contributions from a number of moment and 
potential terms. Hence, actual numerical calculations 
of contributions to the constant H' will, in general, not 
be particularly simple. 

5. CONCLUSION 

I t has been shown how one can obtain an expression 
for the nonlinear dielectric constant of a paraelectric 
material in terms of the coupling parameters of the 
Born-von Karman lattice dynamical theory. Up to the 
present time, all other calculations have been essentially 
single particle calculations and have neglected certain 
potential energy contributions made manifest by the 
lattice dynamical treatment. The role of electron cloud 
deformation has also been investigated and shown to 
contribute to the temperature depencence of the non­
linear response. Only order-of-magnitude estimates 
are possible at present to justify the origin of the ob­
served effects. The detailed calculation that has been 
presented is of interest, however, since the quantities 
involved also have implications for the observed optical 
behavior of paraelectric materials. Indeed, as Szigeti 
has pointed out,16 widths of absorption bands, the pres­
ence of sidebands, etc., are determined by essentially 
the same coupling parameters that are involved in the 
temperature dependence of the dielectric response. 

16 B. Szigeti, Proc. Roy. Soc. (London) A258, 377 (1960). 


